Train Communication Network

IEC 61375 - 4

Wire Train Bus

This is the train bus standardized in IEC 61375 for interconnecting rail vehicles

Introduction
WTB Outline

1. Applications in rail vehicles

2. Physical layer
 1. Electrical RS 485
 2. Middle-Distance
 3. Fibre Optics

3. Device Classes

4. Frames and Telegrams

5. Medium Allocation

6. Clock Synchronization

7. Fault-tolerance concept

8. Integrity Concept

9. Summary
Wire Train Bus

- Trunk cable
- Jumper

1,000,000 bit/second data rate
25 ms data period
860 m covered distance
32 nodes number of devices

"inauguration" assigns each node its address and orientation

Based on DB-bus, FS-ETR450 and SBB Huckepack experience.
distance: 860 m (22 UIC vehicles) and supports up to 32 nodes.

medium: shielded, twisted wire pair at 1 Mbit/s with Manchester II encoding

control: one master (any node may become back-up master)

link protocol: standard HDLC (IEC 3309) controllers.
For the purpose of train inauguration, each node has two independent channels, a main and an auxiliary (HDLC) channel.

One channel is connected to each direction in an end node.
legacy UIC Cable

A 12-wire cable installed in all international coaches.

Current assignment:
1-2: Power amplifier input circuit
3-4: Telephone connection train guard-engine driver
5-6: Remote control of end stage
7-8: Remote control for priority announcements
9: Remote control of door closing
10: Switching on of train lightning
11: Switching off of train lightning
12: Common negative wire
13: Cable screening

Advantage: smooth transition with older coaches

Problems: how to free a pair of wires, bandwidth, exposure, wiring.

DB coaches use wires 9,10,11 and 12 for overriding the emergency brake.

SNCF, ÖBB, SBB, … twist the wires the other way

could not be used for data transmission at the required speed
The UIC discarded the previous idea of decommissioning existing UIC lines and introduced an additional shielded wire pair in the jumper for the Train Bus:

However, SNCF and DB could not agree whether to introduce an additional wire pair into the UIC-cable or into the EP-brake cable.

The EP cable equips SNCF coaches, but few international coaches have it. However, all recent freight vehicles have it.

ERRI tested which medium is better for transmitting data, with no clear superiority.
WTB Wiring

Uses jumper cables or automatic couplers between vehicles.

Fritting (voltage pulses) is used to overcome oxidation of contacts.

Since there are normally two jumpers, the wiring is basically redundant:

There may be more than one node per vehicle (e.g. in locomotives).

The labelling of the redundant lines (A or B) applies to one vehicle only.

The UIC specified a new cable (18 pole) compatible with the 13-pole UIC connector.
WTB Redundancy

The WTB provides physical layer and bus mastership redundancy.

The WTB medium is basically redundant. A node sends on both lines simultaneously. A node receives from one line, but monitors the other line. A signal quality supervision controls switchover.

In case of master failure, another node can take over as master.

In applications where the master is tied to certain applications (strong master), its neighbour node can act as reserve master.
WTB Connectors

trunk cable A1

trunk cable A2

for redundant line attachment

connector A1 (male on line unit)

connector A2 (female on line unit)

connector B1 (male on line unit)

connector B2 (female on line unit)
WTB transmission technology

conduction vehicle
(not equipped, no power or damaged node)

WTB is designed to cover 860 m with 22 vehicles (max. 32 nodes) without repeaters to address retrofit passenger (conduction only) vehicles and short freight trains.

Signal attenuation is high (20,0 dB at 1,0 MHz), reflections occur in the jumper cable

Signal levels must be kept low to reduce electromagnetic emission

To overcome oxidation on contacts, a fritting pulse is applied to clean the contacts when vehicles are put together.
Fritting

Fritting consists in applying a breakdown voltage between the wires to overcome oxidation in contacts.

Fritting is applied by the End Nodes over the Auxiliary Channel, either continuously or when several attempts to detect additional nodes failed.
The high attenuation requires a decoder with a high dynamic range.

To this effect, WTB uses a simple Digital Signal Processor, integrated in a dedicated chip (SDSP).

The decoder operates with two phase-locked loops, requiring the frames to carry a preamble.
Shielding Concept

Grounded shield (recommended by UIC)

End_Node Intermediate_Node(s) End_Node

Terminators

jumper
connector

vehicle ground

inter-vehicle
impedance

Continuous shield (proposed by some railways)

End_Node Intermediate_Node(s) End_Node

Terminators

jumper cable &
connector

Rs

Cs

inter-vehicle
impedance

node ground

Both shielding schemes are acceptable depending on the application.
WTB Signal Encoding

Frames use the HDLC format (ISO 3309), encoded as a Manchester signal.

Framing

Clock

Signals

Data

Framing

Clock

Line

Frame

preamble

flag

frame data

0..1024 bits

16 bits

8

8

8

8

16

8

2

destination device

logical link control

source device

link data size in octets

HDLC enhanced by "SZ" field to increase Hamming Distance
WTB Medium Access

The WTB is controlled by one node acting as a master.

The master polls the other (slave) nodes regularly for process data.

The individual period depends on the vehicle type. (for instance, traction vehicles are polled more often than passenger coaches)

Between periodic phases, the master polls the slaves for possible message data.

A slave requests to transmit message data by raising a flag during the periodic poll:

- **Urgent**
 - e.g. traction vehicles

- **Less urgent**
 - e.g. coaches

![Diagram](image)
WTB Telegrams

Master Frame (request)
Process Data
- DD
- LC
- SD
- SZ
- polled device
- master device
- destination device
- source device
- time
- (broadcast)

Slave Frame (response)
- up to 1024 bits of process data
- SD
- SZ
- LC
- FF
- ON
- OF
- TC
- transport data
- time

Message Data
- DD
- LC
- SD
- SZ
- logical link control
- up to 1024 bits of message data

Supervisory Data:
- DD
- LC
- SD
- SZ
- final node
- final function
- origin node
- origin function
- message transport control

IEC Train Communication Network
Wire Train Bus
1999 September, HK
Beyond Data Transfer

WTB uses the three data exchanges for three types of data:
- periodic, deterministic process variables packed in datasets
- event-driven messages for diagnostics and network management
- supervisory data for WTB management

The content of the first two data types is defined in standard documents.

Especially,
the periodic data protocol and interfaces is defined in IEC 61375-2
the railways-specific data are specified in the UIC leaflet 556;

the message protocol and interfaces is defined in IEC 61375-2 (RTP)
the railways-specific diagnostics data are defined in the UIC 557 leaflets.
UIC556 - Definition Of Regular Variables

40 octets	50 octets	38 octets
free	reserved for traction	

- **40 1-4** apply ep brake
- **5-8** release ep-brake

1 1-4 lock/unlock left doors
2 1-2 all left doors locked
3 1-2 all right doors locked
4 1-2 extend staircase
5 1-2 unused (11)
3 1-2 connect loudspeaker to UIC pair 5-6
4 1-2 connect microphone to UIC pair 3-4
5 1-2 connect external left loudspeakers to UIC pair 7-8
6 1-2 connect external right loudspeakers to UIC pair 7-8
7-8 connect to called vehicle
3-6 brake not applied
7-8 emergency brake signal
1-2 last vehicle present
3-4 tail signal present
5-8 void (11)

traction data are defined in companions UIC documents
Wire Train Bus

<table>
<thead>
<tr>
<th>Topography:</th>
<th>auto-configurable bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium:</td>
<td>electrical: shielded, twisted wire pair</td>
</tr>
<tr>
<td>Covered distance:</td>
<td>860 m, total 32 devices</td>
</tr>
<tr>
<td>Communication chip</td>
<td>standard HDLC controller</td>
</tr>
<tr>
<td></td>
<td>Statistical Digital Signal Processor for decoding</td>
</tr>
<tr>
<td>Processor participation</td>
<td>dedicated communication processor recommended</td>
</tr>
<tr>
<td>Medium redundancy:</td>
<td>fully duplicated for availability</td>
</tr>
<tr>
<td>Signalling:</td>
<td>Manchester II + delimiters</td>
</tr>
<tr>
<td>Gross data rate</td>
<td>1,0 Mbit/s</td>
</tr>
<tr>
<td>Response Time</td>
<td>typical 100 µs</td>
</tr>
<tr>
<td>Basic Period</td>
<td>25 ms</td>
</tr>
<tr>
<td>Address space</td>
<td>6 bits</td>
</tr>
<tr>
<td>Frame size (useful data)</td>
<td>1024 bits (variable)</td>
</tr>
<tr>
<td>Integrity</td>
<td>HDLC Frame Check Sequence + Manchester + Size</td>
</tr>
<tr>
<td>Inauguration</td>
<td>allocation of addresses, node orientation topography distribution</td>
</tr>
<tr>
<td>Master redundancy</td>
<td>fast inauguration</td>
</tr>
</tbody>
</table>
Inauguration

Wire Train Bus
Inauguration

The inauguration allocates to each node its address and orientation and of the characteristics of all nodes present on the bus.
Train Bus Node Addresses

At each change in composition (train shortening, lengthening, recovery,...), the *inauguration* assigns each node its address and direction.

Nodes are addressed by their position with respect to the master:

Direction 1 of the master node is arbitrarily called "bottom", direction 2 "top", irrespectively of the travel direction (avoids confusion with front, rear).

Each node receives its position address, the direction of the master, and whether it is below or above the master.

The master numbers the nodes sequentially in both directions. Up to 62 nodes may be numbered. The master is always 01.
The application may operate with different addresses, e.g. vehicle addresses, especially if there is more than one node per vehicle or vehicles with no node. The application deduces its own addresses from the node addresses.

The translation is done by a mapping module.
Node Structure For Inauguration

Direction 1

bus switch

Rt1 Kt1

Direction 2

terminator switches

Rt2 K12

direction switch

main auxiliary
channel channel

node commands data send / receive node report
Detection channels are active on each end node to find additional nodes. They periodically send "Detect Request" frames, expecting a response.

A node may be:
- **EN:** end node: one channel operating, the other detecting
- **IN:** intermediate node: one channel operating, the other idle.
An unnamed node does not send "Detect_Request" frames.

An unnamed node responds to "Detect_Request" with a "Detect_Response"

The master polls an end node with a Presence_Request every other basic period.

End node 03 reports a composition change to the master next time it is polled.
Including An Unnamed Node

The master sends a "SetInt_Request" to switch node 03 to intermediate.

The master then gives address 04 to the unnamed node by a Naming_Request.

The new node 04 responds by a Naming_Response with its Node_Descriptor.

The new node 04 starts sending Detect_Requests to find further nodes.
Naming a Node

Naming a node requires 4 telegrams:

1 - Read the status of the end node (SR)

2 - Set the end node to intermediate setting (SI)

wait 10 ms to allow relay position change (no traffic !)

3 - Name the new node (NR)

4 - Inform the opposite direction about the new strength

This last step is done by a status reading in the next period (naming in alternate direction).
First Two Nodes

At power-up, a weak node which detects no bus traffic becomes bus master. It takes address "01" and sends "Detect_Requests" to find further nodes.

A node which receives a "Detect_Request" telegram replies with a "Detect_Response" telegram, signalling that it would accept naming.

The bus master sends a naming telegram to that node and gives it the address 02. The two nodes can now operate as train bus.
Node 02 detects a third node, which agrees to be named (yields). Node 02 reports the detection of an additional node to the bus master 01. Node 01 switches node 02 to the intermediate node setting. Node 01 names node 03.
Colliding Segments

When two named segments approach each other, each one includes in its "Detect_Request" the strength (number of nodes) of its composition.

This ensures that the segment with the largest number of nodes will rename the smallest segment, and ensures that the inauguration terminates deterministically.

In case of equal strength, the first extremity node to place its "Detect_Request" wins (this is the only random element in the inauguration).

A segment (through its en node) can refuse naming.

For instance, two trains with two drivers can be coupled.

Although both segments detect each other, a train inauguration can only take place if both drivers agrees to it.

Since the decision to inaugurate or not is taken by the master, the application must tell the master when to accept inauguration. Until then, the strength of the segment is considered infinite.
Master Types

The application distinguishes:

➤ **Strong Nodes**

- Strong Nodes are appointed by the application to become the master.
- If more than one node is appointed as strong, the bus divides into several segments, each controlled by a strong node.
- The application on a strong node is tied to the master function. It may send process data in the poll frames.

➤ **Weak Nodes**

- Weak nodes may become master if no other node takes over this function.
- A weak node automatically takes over in case of failure of the master, without need for authorization of its application.
- The application on a weak node does not care if the node is master.
- Therefore, weak nodes may not send process data in their poll frames.

➤ **Slave Nodes**

Slaves nodes may not become master (for test purposes).
The node descriptors of all nodes are collected by the master during inauguration and distributed to all other nodes as the topography.

- The **Node_Poll** indicates the desired individual period in multiples of the basic period - this information is not communicated to other nodes.
- The **Node_Type** indicates to the destinations how to marshal the process variables. It selects for instance a cluster list for a given application.
- The **Node_Version** indicates the version of the format. All nodes can communicate over the lowest version number.

Node type and node version are included in each WTB Process Data frame as a safety against configuration errors.
Topography Distribution

When the train inauguration is completed (no more nodes detected), the master asks each node three times in sequence to broadcast its Topography:

- Topography_Request
- Topography_Response

Each Topography contains the Node_Key issued by the node during naming.

When all nodes sent the Topography, the master proceeds to regular operation.

If a node did not receive the Topography when regular operation starts, it unnames itself, causing a new inauguration.
The Detect_Request and Detect_Response indicate to the other party the strength of the composition (CS) represented by the end node.

When the two compositions are of equal strength, the first one to place its request wins.

When both compositions are under control of a strong master, the inauguration closes with a "master conflict".
The master sends a Presence_Request to each end node alternatively, indicating
• its composition strength and if inauguration is enabled
• the redundancy status of the lines
The end node responds with a Presence_Response indicating:
• that it is still present and that the bus is correctly terminated
• that another composition has or has not been detected.
The master tells the slave its name and composition strength. The slave responds with its new address if it accepts naming.
The master unnames all nodes by sending an Unname_Request three times in sequence.

The slaves do not respond, but return to the unnamed slave state after a time-out.
When a node requests attention (C_bit in response frame), the master requests its status.

The reasons can be:
- inauguration
- change of descriptor
- sleep wish
Inauguration States In Each Node

Requests
reset
configure
set_mode
promote
demote
remove
start_naming
get_topography
get_node_status

Commands
detect
get_status(N)
set_end(N)
set_intermediate(N)
naming(N)
unname(N)
take_topo(N)
test(N)

Indications
configuration_change
status_change

Reports
bus_shortening(N)
node_change(N)
node_attention(N)
more_nodes(dir)

User

inauguration state machine

Link Layer
Bus shortening occurs when vehicles are separated or when an end node fails.

It has the effect that the bus is not any more terminated.

Some nodes may continue to receive the data, others not.

A node which detects that an extremity node ceases to respond for three consecutive polls goes to the unnamed state.

The former master is first to recover and inaugurates the bus again.

This goes fast since all nodes are unnamed.

Regular operation is resumed after a new topography is distributed.
Master Redundancy & Bus Shortening

A slave node cannot distinguish if the bus has been shortened or if the master has failed: in both cases it receives no more data.

A node which ceases to sense the end nodes for three consecutive basic periods goes to the “UNNAMED_SLAVE” state.

If the master succeeds in recovering the bus, this node will be renamed and reintegrated.

Otherwise, if the node is a weak node, it shall assume after a while the master role, providing master redundancy.

If several weak nodes are in this case, the collision resolution will elect exactly one master.

However, to avoid collision, the nodes become weak master after a time-out depending on their former address (distance to the master, multiplied by the time that it takes to name a node)

Therefore, it is advantageous to name alternatively in both directions.
Exception Handling & Sleep Mode

The WTB allows to switch all nodes to a low-power state (sleep mode), during which a node ceases to receive frames and only monitors line activity.

A node is woken up by a local application signal (WakeUp signal) or by detecting the presence of a valid bus activity (HDLC frame).

Since bus activity wakes up the nodes, a concerted procedure ensures that all nodes enter the sleep state at the same time.

When the master detects that all attached nodes wish to go to low-power mode, it ceases transmission. All nodes then enter the sleep mode.

A node with a sleep request cannot become weak master.

To draw as little as possible from the train's batteries, the detection logic can be pulsed, e.g. be active every 10 s.

The UIC 556 paper describes the conditions which lead to sleep mode, the TCN executes the procedure.
States of a Node

- **START_NODE**
 - **power-up**
 - **set_sleep**

MASTER_STATES
- **set_master**
- **set_slave**

SLAVE_STATES
- **UNNAMED_MASTER**
- **NAMING_MASTER**
- **TEACHING_MASTER**
- **REGULAR_MASTER**
- **UNNAMED_SLAVE**
- **NAMING_SLAVE**
- **LEARNING_SLAVE**
- **REGULAR_SLAVE**

- **rename**
- **teach**
- **all_taught**
- **disband**
- **dis_error**
- **asleep**
- **promoted**
- **sleep**
- **named**
- **learning**
- **regular**
- **learnings**
- **promoted**
- **unnamed**
- **promoted**
- **unnamed**
- **promoted**
- **unnamed**
- **promoted**
- **unnamed**

IEC Train Communication Network
Wire Train Bus
44
1999 September, HK
IEC 61375 Clause 4
Line Redundancy

The inauguration takes place simultaneously over lines A and B. If one line is damaged, the node receives its name over the healthy line.

If the bus switch is stuck closed on one line, two nodes could respond simultaneously, defeating physical redundancy.

To avoid this, a node which detects that one of its bus switches is stuck goes to the passive state (intermediate node) and does not participate in bus communication.

There exist no link layer redundancy, i.e. an error in a communication processor can put down the whole bus. Only a full duplication of the WTB (with two nodes per vehicle) can remedy.
Special Redundancy Conditions

The inauguration has to succeed also under difficult conditions:

• disturbances (as in any transmission)
• one redundant line not connected or damaged
• redundant lines connected one after the other (as normal)
• stuck relay in a node
• power-up or power-down of a node during inauguration

All efforts have been made to avoid that a single failure defeats redundancy.

The largest part of the WTB specification is devoted to the specification of these exceptional conditions.
Gateways operate in warm redundancy (loosely synchronized over the MVB).
Both gateways execute the same cyclic tasks (e.g. for each boogie).
Switchover is not bumpless (some data can be lost during switchover).
Redundant gateways have different WTB addresses (differing by 1).
WTB and gateway failures are independently treated.
WTB redundancy for messages

MVB devices send message data alternatively to each gateway.

Other WTB nodes transmit the data alternately to each gateway (increases throughput)

The failure of a gateway is not distinguished from the failure of its MAU

The network layer cares for the correct selection of the gateway

An error counter associated with each gateway indicates which one is operating (if not both)

Reinsertion of a gateway takes place when a correct message is received from that gateway (individually for each device or node).
WTB redundancy for process variables

Both gateways listen simultaneously for the data traffic.

Only one gateway is source for the WTB or for the MVB.

The other gateway can detect failure of the on-line gateway because sink time supervision fails.

After a while, the standby gateway takes over and changes the status of its ports from sink to source.
WTB redundancy actualisation

Synchronous operation requires synchronisation of operation

There is no link between the gateways except the MVB (WTB is not used)

If is necessary to transmit parts of the context to avoid too large an effort in synchronisation

To this effect, a synchronisation once every 1,0 s should be sufficient.
Beyond inauguration

Once inauguration established a data connection between devices, further information is exchanged between the vehicles for the purpose of train operation. Each vehicle indicates its capabilities, such as length, weight, braking capabilities, etc.. This information is defined in companions documents.